<ruby id="f53rv"></ruby>
<strike id="f53rv"></strike>
<span id="f53rv"></span>
<strike id="f53rv"></strike>
<strike id="f53rv"></strike>
<strike id="f53rv"></strike>
<span id="f53rv"></span>
<span id="f53rv"></span>
<strike id="f53rv"></strike>
<span id="f53rv"><video id="f53rv"></video></span><span id="f53rv"><dl id="f53rv"></dl></span>
<strike id="f53rv"><dl id="f53rv"></dl></strike>
<ruby id="f53rv"></ruby>
<strike id="f53rv"></strike><span id="f53rv"></span>
<strike id="f53rv"></strike>
<del id="f53rv"></del>
<span id="f53rv"><dl id="f53rv"><ruby id="f53rv"></ruby></dl></span>
<span id="f53rv"><dl id="f53rv"></dl></span><strike id="f53rv"></strike>
知識圖譜應用與核心技術實戰

知識圖譜應用與核心技術實戰

知識圖譜應用與核心技術實戰課程/講師盡在知識圖譜應用與核心技術實戰專題,知識圖譜應用與核心技術實戰公開課北上廣深等地每月開課!知識圖譜應用與核心技術實戰在線直播課程(免費試聽)。專家微信18749492090,講師手機13522550408,百度搜索“交廣國際管理咨詢”了解更多。

課程大綱

第一天
第一講 人工智能概述
1.1 人工智能(AI)概念
1.2 AI研究的主要技術問題
1.3 AI的主要學派
1.4 AI十大應用案例

第二講 知識圖譜概述
2.1 知識圖譜(KG)概念
2.2 知識圖譜的起源與發展
2.3 典型知識圖譜項目簡介
2.4 知識圖譜技術概述
2.5 知識圖譜典型應用

第三講 知識表示
3.1 基于符號主義的知識表示概述
3.1.1 謂詞邏輯表示法
3.1.2 產生式系統表示法
3.1.3 語義網絡表示法
3.2 知識圖譜的知識表示
3.2.1 RDF和RDFS
3.2.2 OWL和OWL2
3.2.3 Json-LD與RDFa、MicroData
3.2.4 SPARQL查詢語言
3.3 知識建模實戰Protege

第二天
第四講 知識圖譜核心基礎技術(一)
神經網絡與深度學習
4.1 神經網絡基本原理
4.2 神經網絡應用舉例
4.3 深度學習概述
4.4主流深度學習框架
4.4.1 TesorFlow
4.4.2 Caffe
4.5 卷積神經網絡(CNN)
4.5.1 CNN簡介
4.5.2 CNN關鍵技術: 局部感知、卷積、池化、CNN訓練
4.5.3 典型卷積神經網絡結構
4.5.4 深度殘差網絡
4.5.5 案例:利用CNN進行手寫數字識別

第五講 知識圖譜核心基礎技術(二)
基于深度學習的自然語言處理
5.1 循環神經網絡(RNN)概述
5.2 基本RNN
5.3 長短時記憶模型(LSTM)
5.4 門控循環單元(GRU)
5.5 知識圖譜向量表示方法
5.5.1 向量表示法
5.5.2 知識圖譜嵌入

第三天
第六講 知識抽取與融合
6.1 知識抽取主要方法與方式
6.1.1 主要方法
6.1.2 主要方式
6.2 面向結構化數據的知識抽取
6.2.1 Direct Mapping
6.2.2 R2RML
6.3 面向半結構化數據的知識抽取
6.3.1 基于正則表達式的方法
6.3.2 基于包裝器的方法
6.4. 面向非結構化數據的知識抽取
6.4.1 實體抽取
6.4.2 關系抽取
6.4.3 事件抽取
6.5 知識挖掘
6.5.1知識挖掘流程
6.5.2 知識挖掘主要方法
6.6 知識融合
6.6.1 本體匹配
6.6.2 實體對齊

第七講 存儲與檢索
7.1 知識存儲與檢索基礎知識
7.2 知識圖譜的存儲方法
7.2.1基于關系數據庫的存儲
7.2.2 基于RDF數據庫的存儲
7.2.3 原生圖數據庫Neo4j存儲
7.3 圖譜構建實踐 NEO4J

第八講 知識圖譜案例
8.1 基于Neo4j人物關系知識圖譜存儲與檢索

共有 0 條評論

? Top 永久黄网站色视频免费直播